

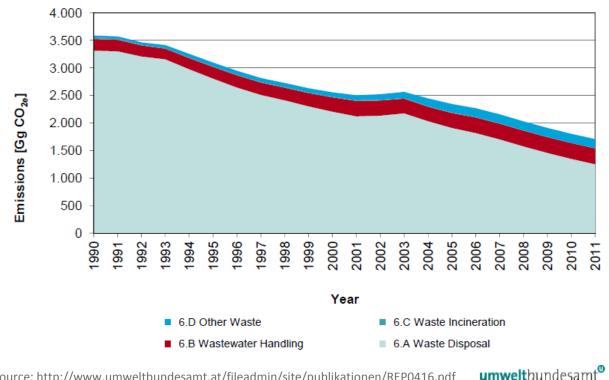
SEPARATE WASTE COLLECTION = CLIMATE PROTECTION!

THE STYRIAN CLIMATE BALANCING TOOL

Mag. Therese Schwarz

Department of Environmental and Energy Process Engineering, Montanuniversity Leoben Franz-Josef-Straße 18, 8700 Leoben, Austria Therese.schwarz@unileoben.ac.at http://avaw.unileoben.ac.at

What will you hear in the next 10 mins?



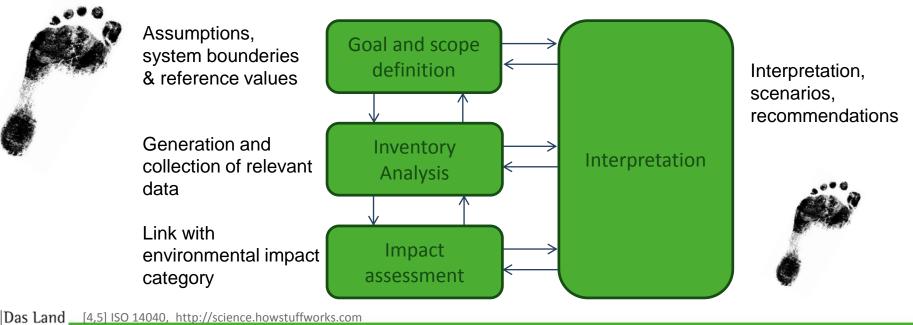
[1] Source: http://www.environmentmagazine.org/sebin/z/v/not-co2-emission-photo6.ipg

Climate change and Waste Management where are the challenges?

Total GHG Emissions – Waste

[2] Source: http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0416.pdf

What is the aim of the project?



[3] Source: http://volksanwaltschaft.gv.at/sprechtage/steiermark

Which method was used to assess this aim?

- Life Cycle Assessment presents the environmental burdens of products/processes
- Carbon footprint focus on green house gases

[4,5] ISO 14040, http://science.howstuffworks.com

Steiermark

What is the main function of the tool?

- Intuitive presentation of emissions due to waste management activities
- Reduction potential of waste management compared to raw material extraction
- Instrument to motivate and communicate
- Designed for Styrian stakeholders
- General approach not designed to evaluate special conditions of a certain plant or region

C

[6,9] Source: http://office.microsoft.com/de-AT/images/ www.klimabilanz.steiermark.at

Mag. Therese Schwarz

What is a functional unit and why needed?

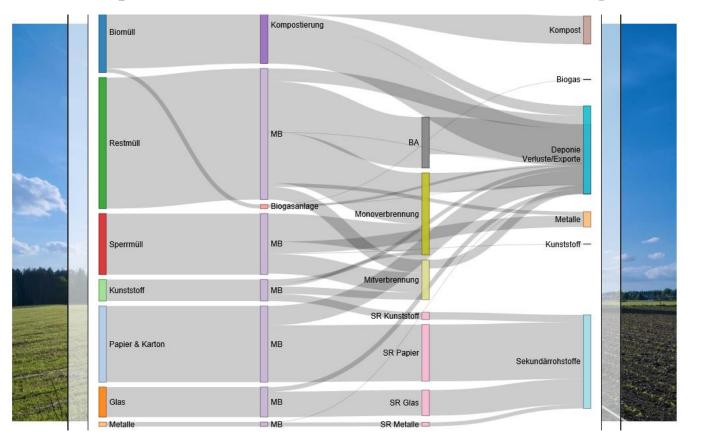
Type of waste	Quantities 2010 [t/a]	Type of waste	Quantities 2010 [t/a]
Sesidual waste	163,269	Packaging	
Organic waste	101,230	- glass	37,422
🗧 Bulky waste	76,015	- lightweight	26,793
Paper/cardboard	94,833	Scrap metal	5,445
		A LAS	2 Miles
		Total 2010 : 505,007 t/a	
			C-ARC

[8] A. Ledersteger

Das Land Steiermark

WINTERREG IVC

& Abfallwirtschaft


Input of waste quantities and transport data

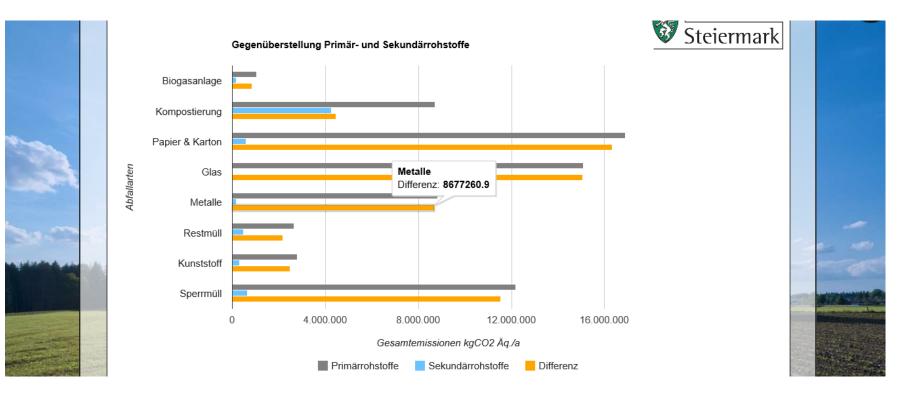
	Das Land Steiermark Klimabilanz-Tool	
	Ersteller: R4R-Meeting Example PLZ, Ort: 8010 Graz Angefallene Gesamtabfallmengen in Tonnen pro Jahr :	
A	101230 Tonnen pro Jahr Biomüll 94833 Tonnen pro Jahr Papier & Karton 37422 Tonnen pro Jahr Glas	-
	5445 Tonnen pro Jahr Metall 163269 Tonnen pro Jahr Restmüll 26 Tonnen pro Jahr Kunststoff Tonnen pro Jahr Sperrmüll	
	Transport: 40000000 Tonnenkilometer LKW Daten auswerten	

Waste quantities within a flow diagramm

Greenhouse gas emissions

Used greenhouse gas emission factors [IPCC]			
Carbon dioxid (CO ₂)	1		
Methane (CH ₄)	25		
Nitrous oxide (N ₂ O)	298		

- Plants and flows are calculated for a Styrian average
- Carbon footprint concept
- Crediting method used emissions from primary and secondary material production



[10] IPCC, http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html

Comparing emissions from raw materials' extraction and waste treatment activities

Steiermark

Results

- Design of an intuative tool to calculate CO_2 äquivalents for waste management activities
- Communication and motivation tool
- Export of results possible
- Environmental protection on regional level focused

Das Land [6,8] Source: A. Ledersteger, http://office.microsoft.com/de-AT/images

Steiermark

SEPARATE WASTE COLLECTION= CLIMATE PROTECTION!

Thank you for your attention!

Mag. Therese Schwarz Therese.schwarz@unileoben.ac.at

<u>www.regions4recycling.eu</u>